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On Relativistic Collisional Invariants
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Two simple proofs of the result that a relativistic summational invariant � is a
linear combination of the momentum four-vector p: are given by assuming that
� is a continuous and differentiable function of class C 2. The results can be
extended to the case when � is just assumed to be a generalized function.
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1. INTRODUCTION

The concept of collisional invariants plays an important role in the study
of the non-relativistic and relativistic Boltzmann equations since it is
related to the equilibrium distribution function.

For both cases the starting point is that the collision term of the
Boltzmann equation must vanish in equilibrium, because of the H-theorem.
This implies that the following condition must hold:

f ( f (x, p, t) f (x, p
*

, t)= f (x, p$, t) f (x, p$
*

, t) (1)

where f (x, p, t) and f (x, p
*

, t) represent distribution functions of two
particles in a binary collision, that depend on the position x, time t and
precollisional momenta p and p

*
. Further p$ and p$

*
denote pre-collisional

momenta which will be transformed into p and p
*

by a collision.
The conservation laws of momentum and energy:

p+p
*

=p$+p$
*

, |p| 2+|p
*

| 2=|p$|2+|p$
*

| 2 (2)

are satisfied in the classical case.
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For relativistic gases the energy-momentum conservation law is writ-
ten as

p:+ p:

*
= p$:+ p

*
$: (3)

where p:, (:=0, 1, 2, 3) represent the components of the momentum four-
vector of a particle in a Minkowski space of metric tensor ':; with
signature (1, &1, &1, &1). Due to the constraint p:p:=m2c2 we have that
p0=- |p| 2+m2c2.

Equation (1) can be written as

�(p)+�(p
*

)=�(p$)+�(p$
*

) (4)

where �( p)=ln f (x, p, t) is a so-called summational invariant.
The solution of (4) for non-relativistic monatomic gases is given by:

�(p)=A+B } p+C |p|2 (5)

A and C are arbitrary scalars and B an arbitrary vector that do not depend
on p.

In the relativistic case the solution of (4) is

�(p)=A+B:p: (6)

where A is an arbitrary scalar and B: an arbitrary four-vector that do not
depend on p:.

The first proof of (5) was given by Boltzmann(1, 2) for twice differen-
tiable functions and later several authors proved the same result under less
stringent assumptions. Among others we cite the works of Gronwall, (3, 4)

Grad, (5) Carleman, (6) Hurley, (7) Arkeryd, (8) Truesdell and Muncaster, (9)

Cercignani, (10) and Arkeryd and Cercignani.(11) Recently Wennberg(12)

proved (5) under the assumption that � is a generalized function, or dis-
tribution.

For the relativistic case the proof of (6) was given by Chernikov, (13)

Bichteler, (14) Boyer, (15) Marle, (16) Ehlers(17) and Dijkstra.(18)

The aim of this paper is to give two simple and slightly different proofs
that (6) holds in the relativistic case. Our proofs have, with respect to those
quoted above, the advantage of simplicity. The proof by Boyer(15) uses a
3-dimensional hyperbolic (or Lobachevski) space H3 in order to reinterpret
the ideas of relativistic kinematics, and proved the theorem as an appli-
cation of this reinterpretation. Bichteler(14) and Ehlers(17) make use of
Cartan's form calculus on manifolds of high dimension. Marle(16) and
Chernikov(13) offer interesting but somewhat lengthy proofs in the case
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when the collision invariants are assumed to be continuous functions.
Dijkstra(18) gave a somewhat technical proof in the case of measurable
functions. Here we give two proofs which use essentially the argument used
by Boltzmann in the classical case. This requires the seemingly stronger
assumption that the collision invariants are twice differentiable, but thanks
to the idea of Wennberg, (12) this is not a strong restriction, because one can
assume that the collision invariants are distributions and the derivatives are
taken in the sense of distributions. The advantage of this proof is that the
property of being a collision invariant is shown to be a local one; the cross
section might vanish for sets of nonzero measure (provided the comple-
ment is not of zero measure), but the set of collision invariants would
remain the same.

2. STATEMENTS AND PROOFS

The content of this section is mainly devoted to the statement and
proof of the following theorem:

Theorem 1. A continuous and differentiable function of class C2

�( p:) is a summational invariant if and only if it is given by (6), where A
is an arbitrary scalar and B: an arbitrary four-vector that do not depend
on p:.

As stated in the introduction, the theorem will be proved in two dif-
ferent ways. As a corollary, using Wennberg's argument, (12) we also prove

Theorem 2. A generalized function, or distribution, �( p:) is a
summational invariant if and only if it is given by (8), where A is an
arbitrary scalar and B: an arbitrary four-vector that do not depend on p:.

First Proof of Theorem 1. Assume that �( p:) is given by (6). Due to
the conservation law of momentum four-vector (3) the relationship (6)
satisfies (4) identically.

Next suppose that (6) holds. The conservation law of the momentum
four-vector implies that there exists a function 9 such that

�(p)+�(p
*

)=9(?, u)=9(?$, u$)=�(p$)+�(p$
*

) (7)

where

?=p+p
*

, u= p0+ p
*0=- |p|2+m2c2+- |p

*
|2+m2c2 (8)
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In fact the first and last expression in (7) must be equal for all the
four-momentum vectors for which (4) holds and hence they must be both
functions of the quantities which are invariant when we pass from the
unprimed to the primed variables according to the definition of this trans-
formation.

In the following we shall need to know the derivatives of p0 with
respect to p, which are given by

�p0

�p i =&
pi

p0

,
�2p0

�pi �pj
=&\pi pj

p3
0

+
' ij

p0 + (9)

First we differentiate (7) with respect to p and get

��
�pi =

�9
�? i &

�9
�u

p i

p0

(10)

By applying the same procedure we differentiate (7) with respect to p
*

and
write the difference

��
�pi &

��
�p i

*
=&

�9
�u \ pi

p0

&
p

*i

p
*0+ (11)

which implies that

\��
�pi &

��
�p i

*
+\p j

p0

&
p
* j

p
*0 +=\ ��

�p j &
��

�p j

*
+\ pi

p0

&
p

*i

p
*0+ (12)

Next the differentiation of the above equation with respect to pk, yields

�2�
�pi �pk \ pj

p0

&
p

* j

p
*0++\��

�p i &
��

�p i

*
+\ pj pk

p3
0

+
'jk

p0 +
=

�2�
�p j �pk \ pi

p0

&
p
*i

p
*0++\ ��

�p j &
��

�p j

*
+\pi pk

p3
0

+
'ik

p0 + (13)

Further the differentiation of (13) with respect to p l

*
reads

�2�
�p i �pk \ p

* j p
* l

p3

*0

+
'jl

p
*0++

�2�
�p i

*
�p l

*
\ pj pk

p3
0

+
'jk

p0 +
=

�2�
�p j �pk \p

*i p
*l

p3

*0

+
'il

p
*0++

�2�
�p j

*
�p l

*
\ pi pk

p3
0

+
' ik

p0 + (14)

Equation (14) has the following form

Cik(p) Djl (p
*

)+Cil (p*
) D jk(p)=Cjk(p) Dil (p

*
)+Cjl (p*

) D ik(p) (15)

442 Cercignani and Kremer



Equation (15) is a tensorial equation of fourth order, the fourth order
tensors being products of second order tensors that depend on different
variables p and p

*
. It will be satisfied only if

Cik(p)=&B0Dik(p), or
�2�

�pi �pk=&B0 \ pi pk

p3
0

+
'ik

p0 +=B0 �2p0

�pi �pk (16)

where B0 is a scalar that does not depend on p:. Now the integration of
(16)2 leads to

�(p)=A+Bipi+B0p0 , or �(p)=A+B:p: (17)

Here A is a scalar and Bi are the components of a three-dimensional vector
that do not depend on p:. Hence we have proved Theorem 1.

The proof given above is based on that given by Boltzmann, (1, 2) as
rewritten by Cercignani, (10) for the non-relativistic case.

Second Proof of Theorem 1. The previous proof is made a bit
lengthy by the necessity of taking the constraint p:p:=m2c2 into account.
This is necessary, if we want to stick to physics. If we want to give a mathe-
matical proof only, we can assume that the speed of light c is also an inde-
pendent variable and the constraint disappears because p0 can be taken as
an independent variable in place of c. In other words, we embed our
problem into a larger one, by letting a parameter vary. This is, however,
not enough, because we need p

*0 to be independent as well. Thus we relax
the constraint further and replace it by a fifth conservation law:

p:p:+ p:

*
p

*:= p$:p$:+ p
*
$: p$

*: (18)

which is trivially satisfied in the original problem.
Then we can repeat the nonrelativistic proof, since (3) and (18) form

exactly the same system (except for the trivial changes due to the pseudo-
Euclidean metric) as in the classical case.(10) Of course, we are now work-
ing in four dimensions. The proof now yields the following result:

�(p)=A+B:p:+Cp:p: (19)

where A and C are scalar constants, B: the components of a four-dimen-
sional constant vector. Now we introduce the constraint p:p:=m2c2 and
we obtain (6) except for a trivial change (the constant A is replaced by
another constant A$=A+Cm2c2).

We come now to the second theorem stated above.

Proof of Theorem 2. Since our problem is linear, we can interpret all
our manipulations even if we assume that � is just a generalized function,
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or distribution, for which derivatives of any order exist, as first pointed out
by Wennberg.(12) The result remains unchanged and Theorem 2 holds.

Remark. The result of Theorem 2 can be useful in several situa-
tions. In particular, � can be an ordinary function, locally integrable, but
without any smoothness property.

3. CONCLUDING REMARKS

The proofs given in this paper indicate how to generalize the simplest
proof on the formula for the collision invariants to the case of a relativistic
gas. We have given two proofs: the second one is somewhat artificial from
a physical viewpoint, but has the advantage of showing that any proof
given in the classical case can be transferred to the relativistic one, by just
embedding the problem in a wider one and introducing a fifth conservation
law in place of the constraint on the components of the four-momentum
vector. Finally, the proof of Theorem 2, based on a result first provided by
Wennberg in the classical case, shows that the smoothness assumptions can
be considerably relaxed.
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